
Convex sets in Euclidean space

What is a convex set?

Definition. A line segment with endpoints x, y ∈ Rn is the set

[x, y] := {λx+ (1− λ)y | 0 ≤ λ ≤ 1}.

Definition. A set S ⊆ Rn is convex if

x, y ∈ S =⇒ [x, y] ⊆ S.

What makes convex sets cool?

Theorem (Separation). Let S1, S2 ⊆ Rn. There exists a hyperplane H in Rn
that (properly) separates S1 and S2 if

(a) S1 and S2 are convex, and

(b) ri(S1) ∩ ri(S2) 6= ∅.

Claim. Let S ⊆ R2 be a set of finitely many points in the plane, with pairwise
distance no greater than 1. Then S is contained in a closed ball of radius no
greater than 1/

√
3.

Some important principles

Theorem. Let {Si}i∈I be a family of convex sets in Rn. Then the intersection⋂
i∈I Si is convex.

Proof. If the intersection is empty, or contains exactly one point, then the claim
follows immediately from the definition. Suppose otherwise, and let x, y ∈

⋂
i∈I .

Then for every i ∈ I, we have x, y ∈ Si and hence [x, y] ⊆ Si by the convexity
of Si. Then clearly [x, y] ⊆

⋂
i∈I , whence the result.

Definition. Let S ⊆ Rn. The convex hull of S, denoted by co(S), is the
smallest convex set in Rn that contains S.

Important results

Theorem (Radon). Let S ⊆ Rn contain at least n+2 elements. Then S can be
partitioned into two disjoint subsets C1 and C2, such that co(C1) ∩ co(C2) 6= ∅.

Theorem (Helly, finite families). Let F = {S1, . . . , Sm} be a family of m ≥
n + 1 convex sets in Rn. If every subfamily of n + 1 sets in F has nonempty
intersection, then

⋂
F 6= ∅.
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Proof. By induction on m.
If m = n+ 1, then there is nothing to prove.
Suppose that m > n + 1 and that the result holds for all such families of

fewer than m sets. It follows immediately that

∀ i ∈ {1, . . . ,m} ∃ xi ∈ S1 ∩ · · · ∩ Si−1 ∩ Si+1 ∩ · · · ∩ Sm.

Then by application of Radon’s theorem to the set S = {x1, . . . , xm}, there
exist C1, C2 ⊆ S such that S = C1 tC2 and co(C1)∩ co(C2) 6= ∅. Suppose wlog
that

C1 = {x1, . . . , xk} and C2 = {xk+1, . . . , xm}

for some k ∈ {1, . . . ,m− 1}. Now observe that

∀ i ∈ {1, . . . , k} xi ∈ Sk+1 ∩ · · · ∩ Sm, and

∀ i ∈ {k + 1, . . . ,m} xi ∈ S1 ∩ · · · ∩ Sk.

Given this, and by the above principles, we have that

co(x1, . . . , xk) ⊆ Sk+1 ∩ · · · ∩ Sm, and

co(xk+1, . . . , xm) ⊆ S1 ∩ · · · ∩ Sk.

Then ⋂
F = S1 ∩ · · · ∩ Sk ∩ Sk+1 ∩ · · · ∩ Sm
⊇ co(x1, . . . , xk) ∩ co(xk+1, . . . , xm)

= co(C1) ∩ co(C2) 6= ∅,

and we are done.

Lemma. A set S ⊆ Rn is compact if, and only if, every family of closed subsets
of S with the finite intersection property has nonempty intersection.

Theorem (Helly). Let F = {Si}i∈I be a family of compact, convex sets in Rn.
If every subfamily of n+ 1 sets in F has nonempty intersection, then

⋂
F 6= ∅.

Proof. Choose some k ∈ I arbitrarily such that Sk ∈ F . Consider the family

G := F ∩ Sk = {Si ∩ Sk | i ∈ I}.

Let H ⊆ G be a finite subfamily. Then there exists some finite J ⊆ I such
that H = {Sj ∩ Sk | j ∈ J }. By the assumption and Helly’s theorem,⋂

H =
⋂
{Sj ∩ Sk | j ∈ J } =

⋂
{Sj | j ∈ J ∩ {k}} 6= ∅.

So G is a family of closed (by the Hahn-Banach theorem) subsets of Sk with the
finite intersection property, and therefore by the above Lemma it follows that⋂

G 6= ∅. Then⋂
F =

(⋂
F
)
∩ Sk =

⋂
(F ∩ Sk) =

⋂
G 6= ∅.
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Proof of the claim

Theorem (Jung). Let S ⊆ Rn. Then S is contained in a closed ball of radius

r ≤ d
√

n
2(n+1) , where d := diam(S).

Proof. We split the proof into two cases, depending on the cardinality of S.
(|S| ≤ n+ 1). This is mostly a geometric argument.

(|S| > n + 1). Set ρ := d
√

n
2(n+1) and consider for each x ∈ S the closed

ball Bρ(x). Let S′ ⊆ S contain n + 1 points and note that the previous case
now applies. Then there exists a z ∈ Rn such that

S′ ⊆ Bρ(z) ⇐⇒ z ∈
⋂
x∈S′

Bρ(x).

Applying Helly’s theorem to the family F := {Bρ(x) | x ∈ S}, we conclude
that ⋂

x∈S
Bρ(x) 6= ∅ ⇐⇒ ∃ z ∈ Rn : S ⊆ Bρ(z),

whence the result.

Setting d = 1 and n = 2, the above claim now follows immediately from this
result.
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