Convex sets in Euclidean space

What is a convex set?

Definition. A line segment with endpoints $x, y \in \mathbb{R}^n$ is the set

$$[x, y] := {\lambda x + (1 - \lambda)y \mid 0 \le \lambda \le 1}.$$

Definition. A set $S \subseteq \mathbb{R}^n$ is *convex* if

$$x, y \in S \implies [x, y] \subseteq S.$$

What makes convex sets cool?

Theorem (Separation). Let $S_1, S_2 \subseteq \mathbb{R}^n$. There exists a hyperplane H in \mathbb{R}^n that (properly) separates S_1 and S_2 if

- (a) S_1 and S_2 are convex, and
- (b) $\operatorname{ri}(S_1) \cap \operatorname{ri}(S_2) \neq \emptyset$.

Claim. Let $S \subseteq \mathbb{R}^2$ be a set of finitely many points in the plane, with pairwise distance no greater than 1. Then S is contained in a closed ball of radius no greater than $1/\sqrt{3}$.

Some important principles

Theorem. Let $\{S_i\}_{i\in\mathcal{I}}$ be a family of convex sets in \mathbb{R}^n . Then the intersection $\bigcap_{i\in\mathcal{I}} S_i$ is convex.

Proof. If the intersection is empty, or contains exactly one point, then the claim follows immediately from the definition. Suppose otherwise, and let $x,y\in \bigcap_{i\in\mathcal{I}}$. Then for every $i\in\mathcal{I}$, we have $x,y\in S_i$ and hence $[x,y]\subseteq S_i$ by the convexity of S_i . Then clearly $[x,y]\subseteq\bigcap_{i\in\mathcal{I}}$, whence the result.

Definition. Let $S \subseteq \mathbb{R}^n$. The *convex hull* of S, denoted by co(S), is the smallest convex set in \mathbb{R}^n that contains S.

Important results

Theorem (Radon). Let $S \subseteq \mathbb{R}^n$ contain at least n+2 elements. Then S can be partitioned into two disjoint subsets C_1 and C_2 , such that $co(C_1) \cap co(C_2) \neq \emptyset$.

Theorem (Helly, finite families). Let $\mathscr{F} = \{S_1, \ldots, S_m\}$ be a family of $m \ge n+1$ convex sets in \mathbb{R}^n . If every subfamily of n+1 sets in \mathscr{F} has nonempty intersection, then $\bigcap \mathscr{F} \ne \emptyset$.

Proof. By induction on m.

If m = n + 1, then there is nothing to prove.

Suppose that m > n + 1 and that the result holds for all such families of fewer than m sets. It follows immediately that

$$\forall i \in \{1, \dots, m\} \,\exists \, x_i \in S_1 \cap \dots \cap S_{i-1} \cap S_{i+1} \cap \dots \cap S_m.$$

Then by application of Radon's theorem to the set $S = \{x_1, \ldots, x_m\}$, there exist $C_1, C_2 \subseteq S$ such that $S = C_1 \sqcup C_2$ and $\operatorname{co}(C_1) \cap \operatorname{co}(C_2) \neq \emptyset$. Suppose wlog that

$$C_1 = \{x_1, \dots, x_k\}$$
 and $C_2 = \{x_{k+1}, \dots, x_m\}$

for some $k \in \{1, \dots, m-1\}$. Now observe that

$$\forall i \in \{1, \dots, k\} \ x_i \in S_{k+1} \cap \dots \cap S_m$$
, and $\forall i \in \{k+1, \dots, m\} \ x_i \in S_1 \cap \dots \cap S_k$.

Given this, and by the above principles, we have that

$$co(x_1, \ldots, x_k) \subseteq S_{k+1} \cap \cdots \cap S_m$$
, and $co(x_{k+1}, \ldots, x_m) \subseteq S_1 \cap \cdots \cap S_k$.

Then

$$\bigcap \mathscr{F} = S_1 \cap \dots \cap S_k \cap S_{k+1} \cap \dots \cap S_m$$

$$\supseteq \operatorname{co}(x_1, \dots, x_k) \cap \operatorname{co}(x_{k+1}, \dots, x_m)$$

$$= \operatorname{co}(C_1) \cap \operatorname{co}(C_2) \neq \emptyset,$$

and we are done.

Lemma. A set $S \subseteq \mathbb{R}^n$ is compact if, and only if, every family of closed subsets of S with the finite intersection property has nonempty intersection.

Theorem (Helly). Let $\mathscr{F} = \{S_i\}_{i \in \mathcal{I}}$ be a family of compact, convex sets in \mathbb{R}^n . If every subfamily of n+1 sets in \mathscr{F} has nonempty intersection, then $\bigcap \mathscr{F} \neq \emptyset$.

Proof. Choose some $k \in \mathcal{I}$ arbitrarily such that $S_k \in \mathcal{F}$. Consider the family

$$\mathscr{G} := \mathscr{F} \cap S_k = \{ S_i \cap S_k \mid i \in \mathcal{I} \}.$$

Let $\mathscr{H} \subseteq \mathscr{G}$ be a finite subfamily. Then there exists some finite $\mathcal{J} \subseteq \mathcal{I}$ such that $\mathscr{H} = \{S_j \cap S_k \mid j \in \mathcal{J}\}$. By the assumption and Helly's theorem,

$$\bigcap \mathcal{H} = \bigcap \{S_j \cap S_k \mid j \in \mathcal{J}\} = \bigcap \{S_j \mid j \in \mathcal{J} \cap \{k\}\} \neq \emptyset.$$

So \mathscr{G} is a family of closed (by the Hahn-Banach theorem) subsets of S_k with the finite intersection property, and therefore by the above Lemma it follows that $\bigcap \mathscr{G} \neq \emptyset$. Then

$$\bigcap \mathscr{F} = \left(\bigcap \mathscr{F}\right) \cap S_k = \bigcap (\mathscr{F} \cap S_k) = \bigcap \mathscr{G} \neq \emptyset.$$

Proof of the claim

Theorem (Jung). Let $S \subseteq \mathbb{R}^n$. Then S is contained in a closed ball of radius $r \leq d\sqrt{\frac{n}{2(n+1)}}$, where $d := \operatorname{diam}(S)$.

Proof. We split the proof into two cases, depending on the cardinality of S.

 $(|S| \le n+1)$. This is mostly a geometric argument.

(|S|>n+1). Set $\rho:=d\sqrt{\frac{n}{2(n+1)}}$ and consider for each $x\in S$ the closed ball $\overline{B}_{\rho}(x)$. Let $S'\subseteq S$ contain n+1 points and note that the previous case now applies. Then there exists a $z\in\mathbb{R}^n$ such that

$$S' \subseteq \overline{B}_{\rho}(z) \iff z \in \bigcap_{x \in S'} \overline{B}_{\rho}(x).$$

Applying Helly's theorem to the family $\mathscr{F}:=\{\overline{B}_{\rho}(x)\mid x\in S\}$, we conclude that

$$\bigcap_{x \in S} \overline{B}_{\rho}(x) \neq \emptyset \iff \exists z \in \mathbb{R}^{n} : S \subseteq \overline{B}_{\rho}(z),$$

whence the result.

Setting d=1 and n=2, the above claim now follows immediately from this result.